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Abstract

We introduce an approach by integrating emotion recog-
nition with style transfer in image processing using convo-
lutional neural networks (CNNs). It traces the evolution
of style transfer techniques and a system where styles are
dynamically applied based on the emotional context of im-
ages. Utilizing a specially designed 21-layer CNN for emo-
tion classification and a unique neural style transfer model,
the study conducts experiments on the Expression in-the-
Wild (ExpW) dataset. The results showcase the potential
of this method in creating visually and emotionally rich im-
ages, achieving significant advancements in the field of neu-
ral style transfer and emotion recognition.

1. Introduction
The field of style transfer has undergone significant devel-
opment since it began in the late 1990s when it mostly con-
cerned fundamental image processing tasks. This journey
has been marked by considerable improvements, leading up
to the current condition in which the integration of emotion
with style transfer represents a new frontier in image gener-
ation.

Initially, style transfer techniques were limited to signal-
processing methods and filter applications, prevalent since
the 1980s. These early methods focused on altering the aes-
thetic aspects of images using available digital manipulation
tools. However, a landmark development occurred in 2015
with the pioneering work of Gatys et al. [1] In their ground-
breaking study, they introduced a novel concept of neural
style transfer. This approach utilized convolutional neural
networks (CNNs) to apply artistic styles to various content
images, representing a significant leap in the capabilities of
style transfer techniques. It allowed for the creation of vi-
sually appealing compositions by combining the content of
one image with the style of another, thus expanding the aes-
thetic potential of images.

Building on these advancements, our research presents
a novel two-fold technique for expanding CNN capabilities

beyond mere style transfer. We intend to incorporate recog-
nition of emotions into the process, giving the style transfer
technique a new depth. Our solution involves recognizing
emotions in input images using CNN-based image classifi-
cation methods. We aim to dynamically apply styles that
enhance the natural emotions in an image by identifying the
emotional context of the image. This approach seeks to pro-
duce compositions that are not only visually appealing but
also emotionally rich. So, our goal is to make images that
are not just pretty but also capture the right emotion. This
could make pictures a lot more interesting and engaging for
everyone.

2. Related Work
The field of style transfer in image processing has seen re-
markable contributions, with some key works significantly
shaping its development. A groundbreaking paper in this
area is ”A Neural Algorithm of Artistic Style” by Gatys et
al. [1], published in 2015. This paper was pivotal, introduc-
ing a method for artistic style transfer that blends the con-
tent of one image with the style of another. The process in-
volves minimizing content and style reconstruction loss us-
ing features extracted from a pre-trained convolutional neu-
ral network (CNN). This concept, building on their earlier
work in texture synthesis, set the stage for future research
in Neural Style Transfer (NST). This approach used a pre-
trained CNN to extract content and style features from im-
ages. By optimizing a generated image to match the content
features of one image and the style features of another, they
succeeded in creating high-quality stylized images.

Another significant advancement was made by Johnson
et al. [4] in 2016. In their paper ”Perceptual Losses for
Real-Time Style Transfer and Super-Resolution,” they pro-
posed a method for real-time neural network style transfer
using perceptual losses. These losses incorporate high-level
features from pre-trained CNNs. By employing perceptual
loss functions to train feed-forward networks for the style
transfer task, they addressed computational challenges in
Gatys et al.’s method and achieved substantially faster re-
sults.



Figure 1. System Architecture

Subsequently, Gatys et al. [2] themselves expanded
on their original framework, introducing a multi-scale ap-
proach that allowed for more nuanced handling of style and
content at different abstraction levels, leading to more aes-
thetically pleasing stylized images. Huang et al. [3] tack-
led the limitation of fixed styles in neural style transfer by
proposing adaptive instance normalization. This method
enables arbitrary style transfer, allowing for the application
of diverse artistic styles to content images in real time. Li et
al.’s [6] work, “Universal Style Transfer via Feature Trans-
forms,” presented a universal style transfer technique, offer-
ing greater control over both style and content.

Convolutional Neural Networks (CNNs) have demon-
strated significant prowess in tasks such as image process-
ing and emotion recognition since their introduction in the
late 1990s. However, their early applicability was con-
strained by limited training data and computational power.
The landscape shifted markedly in the 2010s, witnessing
a substantial increase in computational capabilities and the
availability of expansive datasets. These developments have
elevated CNNs into highly effective tools for tasks includ-
ing feature extraction and emotion recognition. Numerous
techniques have been devised to enhance the performance
of CNNs. Recent developments and extensive research un-
derscore CNNs as extremely favorable tools for address-
ing challenges in image processing, pattern recognition, and
feature extraction.

The Facial Expression Recognition 2013 (FER 2013) [5]
dataset, introduced at the International Conference on Ma-
chine Learning (ICML) in 2013, has evolved into a bench-
mark for evaluating model performance in emotion recog-
nition. Various CNN architectures have exhibited great per-
formance, achieving classification accuracies ranging from
65% to 72.7%. Ensemble methods, such as the work by Liu
et al. [7], demonstrated improved performance by ensem-
bling three CNNs, resulting in a 2.6% accuracy enhance-
ment.

Researchers have also proposed novel architectural mod-

ifications to enhance performance. Shi et al. [9] introduced
the amend representation module (ARM), substituting the
pooling layer, and achieved an accuracy of 71.38%. Tang
et al. [10] replaced the softmax layer with a support vector
machine in a deep neural network, achieving a classification
accuracy of 71.2%.

Pramerdorfer et al. [8] conducted a comprehensive com-
parison of three prominent CNN architectures—VGG, In-
ception, and ResNet. Their findings reveal that VGG out-
performs with an accuracy of 72.7%, followed by ResNet
at 72.4%, and Inception at 71.6%. Ensembling eight CNNs
boosted the performance by 2.5%.

3. Proposed Approach
3.1. System Architecture

As outlined in our system diagram (Figure 1), we first feed
the input image into our emotion detection model, which la-
bels the image with an emotion. After identifying the emo-
tion, we send the image to a style transfer model trained
specifically for that emotion. This model generates the final
image with the new style, as depicted in the figure. We have
trained seven style transfer models, i.e., one model for each
emotion label: happy, sad, fear, neutral, surprise, disgust,
and angry.

3.2. Classification Model

In the past decade, convolutional neural networks (CNNs)
have shown remarkable effectiveness in image classifica-
tion tasks, primarily due to their architecture, which mir-
rors the human visual perception system. Unlike traditional
neural networks, CNNs are designed to automatically and
adaptively learn spatial hierarchies of features from input
images. This learning is facilitated through convolutional
layers, which apply filters to capture local patterns such as
edges, textures, and shapes. These filters can detect fea-
tures at various scales and locations in an image, making
CNNs highly efficient in dealing with the spatial and hi-



Figure 2. Emotion Classification Model Architecture

erarchical nature of visual data. Another crucial aspect of
CNNs is the pooling layers, which reduce the spatial size
of the representation, lowering the amount of computation
and weights in the network. This not only improves com-
putational efficiency but also contributes to translation in-
variance. To leverage these advantages of CNNs, we have
developed a ConvNet-based architecture for the multi-class
emotion classification task. Our design is a 21-layer CNN
network, including convolutional, pooling, batch normal-
ization, dropout, and fully-connected layers.

Initially, we built a block of layers, reused multiple times
in the model architecture, called the convolutional block.
This block consists of three layers: a convolutional layer,
a batch normalization layer, and a max pooling layer. The
first layer is a 2D convolutional layer, followed by batch
normalization that normalizes activations from the previous
layer, enhancing the model’s stability. A 2x2 max pooling
layer follows, reducing the spatial dimensions (height and
width) of the input volume for the next layer.

All the 2D convolutional layers in the model have a filter
size of (3x3), a stride of 1, and no padding. These layers use
the ReLU (Rectified Linear Unit) activation function. The
number of filters in the first convolutional layer is 16, which
doubles in subsequent convolutional layers. The model be-
gins with a convolutional block that takes an input size of
(128x128x3).

The model continues with a series of convolutional
blocks, each comprising a 2D convolutional layer with pro-
gressively increasing filters—32, 64, 128, and finally 256.
Like the first, these layers utilize the ReLU activation func-
tion and include batch normalization steps. The second and
fourth convolutional blocks incorporate dropout layers with
a rate of 0.25, to prevent overfitting by randomly deactivat-
ing a portion of neurons during training.

The network transitions from convolutional to dense lay-
ers after these blocks. A flattening layer converts the 2D
feature maps into a 1D feature vector, allowing the out-

puts of the convolutional network to feed into fully con-
nected layers. This is followed by two dense layers with
512 and 256 neurons, respectively, critical for synthesizing
the learned features for classification. Each layer applies the
ReLU activation function to maintain non-linear properties.
Finally, the output of the last fully connected layer feeds
into a dense layer with seven neurons, equal to the number
of classes. This layer uses a softmax activation function,
suitable for multi-class classification problems as it converts
the outputs into a probability distribution over the predicted
output classes. This model architecture is shown in Figure
2.

For training the described model, we used the Adam op-
timizer for its efficiency in handling sparse gradients and
adaptively adjusting learning rates. The loss function em-
ployed is sparse categorical cross-entropy, ideal for multi-
class classification problems where each class is mutually
exclusive.

3.3. Neural Style Transfer

Neural Style Transfer (NST) involves manipulating images
to adopt the visual style of another image. This technique
employs neural networks for image transformation. The
core concept of NST is to blend two images: a content im-
age and a style reference image, resulting in an output image
that retains the content of the first image but is rendered in
the artistic style of the second.

Neural Style Transfer is implemented using an optimiza-
tion technique that adjusts the output image to match the
content statistics of the content image and the style features
of the style reference image. These features are extracted
using a convolutional neural network. For example, the net-
work’s lower layers might capture basic features like edges
and textures, while higher layers can represent more com-
plex features. NST was first introduced in the paper “A Neu-
ral Algorithm of Artistic Style” by Leon Gatys et al. [1] in
2015. This foundational work utilized the VGG-16 network



Figure 3. Image Transformer Model Architecture

architecture, pre-trained on image recognition tasks, to sep-
arate and recombine the content and style of images.

Traditionally, image transformation tasks such as denois-
ing, super-resolution, and colorization were approached us-
ing feedforward convolutional neural networks trained in
a supervised manner with a per-pixel loss function. This
method measures the difference between the output and
ground-truth images pixel by pixel. While efficient, this ap-
proach does not always capture perceptual differences be-
tween the output and reference images well. Style transfer
by Leon Gatys et al. [1] achieved high-quality results using
perceptual loss functions. Perceptual loss uses high-level
image feature representations extracted from pre-trained
convolutional neural networks. The drawback of this ap-
proach is its slow inference, as it requires solving an op-
timization problem. During inference, the noise image is
iteratively updated by calculating the gradients of the loss
function and adjusting the image to minimize this loss, a
time-consuming process.

J. Johnson et al. [4] devised a method that combines
the aforementioned approaches by training a feed-forward
transformation network. Rather than using per-pixel loss
functions that depend only on low-level pixel information,
they trained the network using perceptual loss functions that
rely on high-level features from a pre-trained loss network.
This approach overcomes the shortcomings of per-pixel loss

by using perceptual loss and also speeds up inference time,
as no optimization iterations have to be run for the input
image.

Our style transfer model consists of a two-stage neural
network: an image transformation network and a loss net-
work. The image transformation network is a deep residual
neural network that transforms the input image into output
images. The loss network is a VGG16 model pre-trained on
ImageNet weights and is used for defining the perceptual
loss between the content and style images.

The input and output images of the image transforma-
tion network are of the shape 3 x 256 x 256. Additionally,
at test time, since this model is fully convolutional, it can
be applied to images of any size. This network consists
of 16 convolutional layers. No pooling layers are used in
this model; instead, stride-2 and stride-1/2 convolutions are
used to downsample and upsample the input, respectively.
We have used instance normalization instead of batch nor-
malization, as it yields better results and aids in faster styl-
ization. First, we define a Conv2D block comprising three
layers: a convolutional layer, instance normalization, and
ReLU activation. Given the input image, a stride-1 Conv2D
block is applied, followed by 2 stride-2 Conv2D blocks
for downsampling. Subsequently, 5 residual blocks are ap-
plied, each containing 5 layers: 1 Conv2D block, 1 convo-
lutional layer, and 1 instance normalization layer. The input



is then added to the output of the instance normalization
layer to build the residual connection. After the residual
blocks, there are 2 sets of upsampling layers using nearest
neighbors interpolation with convolutional layers. Finally,
a stride-1 convolutional layer is applied to generate an out-
put image of size 3 x 256 x 256. The image transformation
network is showcased in Figure 3.

The loss network consists of a VGG16 model pre-trained
on ImageNet. For the content and style images, we take the
feature maps from the output of the ReLU activation layer.
Based on these feature maps for the content and output im-
age, we calculate the content loss. Secondly, we calculate
the gram matrix for the style and output images using the
feature maps, and then calculate the style loss. Our objec-
tive is to minimize the total loss, which is the sum of the
content and style losses.

4. Experiments
4.1. Dataset

We conducted all our training and experiments on the Ex-
pression in-the-Wild (ExpW) [11] dataset. The ExpW
dataset contains 91,793 faces, each manually labeled with
expressions. Every face image is annotated as one of the
seven basic expression categories: ’angry,’ ’disgust,’ ’fear,’
’happy,’ ’sad,’ ’surprise,’ or ’neutral’. Figure 4 illustrates
some sample images from the ExpW dataset.

Figure 4. Expression-in-the-Wild Dataset

4.2. Data Preprocessing

The images in the dataset varied in size, so we first resized
each image to a uniform shape of 128x128. As indicated
in the table, the raw dataset exhibited a significant imbal-
ance among the classes, leading to a bias in the classifi-
cation model towards classes with more data points. To
address this issue, we implemented data augmentation to
equalize the number of images across classes. Specifically,

Table 1. Class-wise data distribution

Class Label Before Augmentation After Augmentation
Surprise 7060 (7.6%) 10000 (13.7%)
Happy 30537 (33.2%) 10000 (13.7%)

Sad 10559 (11.5%) 10000 (13.7%)
Neutral 34883 (38%) 10000 (13.7%)
Angry 3671 (3.9%) 11013 (15.1%)

Disgust 3995 (4.3%) 11985 (16.4%)
Fear 1088 (1.1%) 9792 (13.4%)

we applied random rotations to the images from classes with
fewer data points, aiming to bring the number of images in
each class to approximately 10,000. The distribution of the
dataset after augmentation is presented in Table 1. A sample
of the augmented output is shown in Figure 5.

Figure 5. Data Augmentation

4.3. Implementation Details

For the emotion classification model, we divided the pre-
processed dataset into train, validation, and test sets with
ratios of 70:20:10, respectively. The model was trained for
50 epochs using an Adam optimizer with a learning rate of
0.001 and a batch size of 16. Accuracy and loss were the
metrics used to evaluate the model’s performance.

In training the neural style transfer (NST) model, we
utilized the ExpW dataset. We selected 7 different artis-
tic styles for training the 7 NST models, corresponding to
each emotion class. Some of these styles were inspired by
the works of painters such as Vincent van Gogh and Edvard
Munch, while others were generated using DALL·E (an AI
image generative model by OpenAI). For the model train-
ing, we set the content image weight to 1.0 and the style im-
age weight to 400,000. Each of the NST models was trained



Figure 6. Output from the different ReLU activation layers of VGG16 for happy emotion

for only 5 epochs due to limited computational resources
and extensive training time. For training the loss network
(VGG16) of the NST model, we could use the feature map
of the content and style image from any of these four acti-
vation output layers: relu1 2, relu2 2, relu3 3, and relu4 3.
We experimented with the NST model for the ’happy’ emo-
tion using each of these activation layer outputs separately
and observed that relu2 2 produced the most stable output,
effectively incorporating features of both content and style
images. Therefore, for training all other NST models, we
used relu2 2. The generated outputs from different activa-
tion layers are shown in Figure 6.

All our training and experiments were conducted using
PyTorch (for the NST model) and TensorFlow (for the Emo-
tion classification model) on an Nvidia Tesla P100 GPU.
Our emotion classification model took approximately 30
minutes to complete 50 epochs of training, while each Neu-
ral Style Transfer model required about 5.5 hours for 5
epochs of training.

4.4. Evaluation Metrics

For our emotion classification model, we have selected ac-
curacy and loss as the primary evaluation metrics.

For the neural style transfer training, we plan to mini-
mize the total loss. The total loss equation is typically rep-
resented as follows:

Ltotal = α · Lcontent + β · Lstyle

Where: Ltotal is the total loss. α and β are the weighting
factors for the content loss and style loss, respectively.

The content loss ensures that the activations of certain

layers are similar between the content image and the gener-
ated image and is computed as follows:

Lcontent(p⃗, x⃗, l) =
1

2

∑
i,j

(F l
ij(x⃗)− P l

ij(p⃗))
2

Where: F l
ij(x⃗) is the feature map obtained from the gener-

ated image x⃗ at layer l. P l
ij(p⃗) is the feature map obtained

from the original content image p⃗ at layer l. i and j index
the feature map’s elements.

Style loss is computed as the mean squared error be-
tween the Gram matrices of the style image and the gen-
erated image across multiple layers:

Lstyle(⃗a, x⃗) =

L∑
l=0

wl · El

Where: - El is the style loss for a single layer, computed as:

El =
1

4N2
l M

2
l

∑
i,j

(Gl
ij(x⃗)−Al

ij (⃗a))
2

Gl
ij is the Gram matrix corresponding to the generated im-

age x⃗ at layer l. Al
ij is the Gram matrix corresponding to

the style image a⃗ at layer l. Nl is the number of feature
maps at layer l. Ml is the size of the feature map (height
times width) at layer l. wl is the weighting factor for the
contribution of layer l to the style loss.

5. Results and Discussion
The emotion classification model achieved a training accu-
racy of 96.53% and a training loss of 0.1082, along with



a validation accuracy of 79.34% and a validation loss of
1.0734. The model reached a test accuracy of 77.51%. Sev-
eral factors might explain why the model did not achieve
higher accuracy. Emotions are complex and often subtle,
posing a challenge for the model to differentiate between
similar emotions or detect nuanced expressions. Addition-
ally, the ExpW dataset’s manual labeling introduces sub-
jectivity, adding another layer of complexity. Variations in
the interpretation and labeling of emotions in the training
data can affect the model’s ability to generalize accurately.
Furthermore, the immense variability in how emotions are
expressed through facial expressions, gestures, and context
complicates the task.

Initially, before augmentation, the model’s performance
was worse due to class imbalance in the dataset. Through
validation and evaluation, we confirmed that our augmen-
tation strategy effectively addressed this class imbalance
without compromising the integrity of the facial expres-
sions, leading to improved model performance and a more
comprehensive understanding of diverse emotional states.
We have illustrated the comparison of accuracy and loss for
both training and validation over the 50 epochs in Figure 7.

Figure 7. Accuracy and Loss for Emotion Classification Model

6. Conclusion

In conclusion, we have developed an approach to effectively
apply artistic styles based on the emotion in the input im-
age using convolutional neural network-based techniques.
We successfully demonstrated the potential of integrating
emotions into style transfer, enhancing both the aesthetic
and emotional depth of images. In future work, we hope to
explore applying multiple artistic styles to content images
instead of just one style per image and expanding to more
complex and subtle emotional states.

We encountered some limitations in the above imple-
mentation, most notably in the critical process of selecting
suitable style images for effective style transfer. An incor-
rect choice may lead to the output image merely adopting
the color palette of the style image, lacking the application
of distinctive textures from the selected style image. Fur-
thermore, the stylized image outputs could have been better
for some emotions. The style loss could have been further
minimized if we had sufficient compute resources (a power-
ful GPU) to train the models for more epochs, typically 50
to 100 epochs. This limitation forced us to limit each style
transfer model training to a mere 5 epochs.
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Figure 8. Style Transfer Loss for 7 emotions

Figure 9. Image output from the Neural Style Transfer Models for each emotion class
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